- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002100000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Zou, James Y (3)
-
Zhang, Linjun (2)
-
Cao, Hancheng (1)
-
Chen, Lingjiao (1)
-
Deng, Zhun (1)
-
Finn, Chelsea (1)
-
Huang, Zhi (1)
-
Izzo, Zachary (1)
-
Kawaguchi, Kenji (1)
-
Lepp, Haley (1)
-
Liang, Weixin (1)
-
Liu, Sheng (1)
-
McFarland, Daniel A (1)
-
Vodrahalli, Kailas (1)
-
Wang, Yiping (1)
-
Yao, Huaxiu (1)
-
Ye, Haotian (1)
-
Zhang, Yaohui (1)
-
Zhao, Xuandong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-written and AI-generated reference texts to accurately and efficiently examine real-world LLM-use at the corpus level. We apply this approach to a case study of scientific peer review in AI conferences that took place after the release of ChatGPT: ICLR 2024, NeurIPS 2023, CoRL 2023 and EMNLP 2023. Our results suggest that between 6.5% and 16.9% of text submitted as peer reviews to these conferences could have been substantially modified by LLMs, i.e. beyond spell-checking or minor writing updates. The circumstances in which generated text occurs offer insight into user behavior: the estimated fraction of LLM-generated text is higher in reviews which report lower confidence, were submitted close to the deadline, and from reviewers who are less likely to respond to author rebuttals. We also observe corpus-level trends in generated text which may be too subtle to detect at the individual level, and discuss the implications of such trends on peer review. We call for future interdisciplinary work to examine how LLM use is changing our information and knowledge practices.more » « less
-
Yao, Huaxiu; Wang, Yiping; Zhang, Linjun; Zou, James Y; Finn, Chelsea (, Advances in neural information processing systems)
-
Deng, Zhun; Zhang, Linjun; Vodrahalli, Kailas; Kawaguchi, Kenji; Zou, James Y (, Advances in neural information processing systems)
An official website of the United States government

Full Text Available